Improved repetitive-element PCR fingerprinting for resolving pathogenic and nonpathogenic phylogenetic groups within Escherichia coli.

نویسندگان

  • J R Johnson
  • T T O'Bryan
چکیده

Repetitive-element PCR (rep-PCR) fingerprinting is a promising molecular typing tool for Escherichia coli, including for discriminating between pathogenic and nonpathogenic clones, but is plagued by irreproducibility. Using the ERIC2 and BOXA1R primers and 15 E. coli strains from the ECOR reference collection (three from each phylogenetic group, as defined by multilocus enzyme electrophoresis [MLEE], including virulence-associated group B2), we rigorously assessed the effect of extremely elevated annealing temperatures on rep-PCR's reproducibility, discriminating power, and ability to reveal MLEE-defined phylogenetic relationships. Modified cycling conditions significantly improved assay reproducibility and discriminating power, allowing fingerprints from different cyclers to be analyzed together with minimal loss of resolution. The correspondence of rep-PCR with MLEE with respect to tree structure and regression analysis of distances was substantially better with modified than with standard cycling conditions. Nonetheless, rep-PCR was only a fair surrogate for MLEE, and when fingerprints from different days were compared, it failed to distinguish between different clones within all-important phylogenetic group B2. These findings indicate that although the performance and phylogenetic fidelity of rep-PCR fingerprinting can be improved substantially with modified assay conditions, even when so improved rep-PCR cannot fully substitute for MLEE as a phylogenetic typing method for pathogenic E. coli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogenetic typing and molecular detection of virulence factors of avian pathogenic Escherichia coli isolated from colibacillosis cases in Japanese quail

Colibacillosis caused by avian pathogenic Escherichia coli (APEC) is an economic threat to the poultry industry throughout the world. Some of the virulence genes may enhance the ability of E. coli isolates to grow in the tissues of broilers. The APEC strains are assigned to a few distinct phylogenetic groups. The purpose of the present study was to detect the virulence genes a...

متن کامل

Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) Genotyping of Escherichia coli Strains Isolated from Different Animal Stool Specimens

Background: Escherichia coli is a commensal-pathogenic organism, which includes a wide range of strains. Despite several advanced molecular-genomic technologies for detecting and identifying different strains of E. coli, Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) technique is ...

متن کامل

Molecular typing of avian Escherichia coli isolates by enterobacterial repetitive intergenic consensus sequences-polymerase chain reaction (ERIC-PCR)

BACKGROUND: Colibacillosis is one of the most economically important diseases of poultry worldwide. OBJECTIVES: This study was conducted to examine the clonal relatedness and typing of 95 avian Escherichia coli isolates by ERIC-PCR. METHODS: Sixty-three E. coli isolates from two common manifestations of colibacillosis (yolk sac infection and colisepticemia) and 32 isolates from feces of apparen...

متن کامل

Virulence factors and genetic variability of uropathogenic Escherichia coli isolated from dogs and cats in Italy

In this study, the association between virulence genotypes and phylogenetic groups among Escherichia (E.) coli isolates obtained from pet dogs and cats with cystitis was detected, and fingerprinting methods were used to explore the relationship among strains. Forty uropathogenic E. coli (UPEC) isolated from dogs (n = 30) and cats (n = 10) in Italy were analysed by polymerase chain reaction (PCR...

متن کامل

Phylogenetic group determination of faecal Escherichia coli and comparative analysis among different hosts

Phylogenetic analysis has shown that Escherichia coli is composed of four main phylogenetic groups (A, B1, B2 and D). Characterization of phylogenetic groups is of clinical interest, as group A and B1 generally associated with commensals, whereas most enteropathogenic isolates are assigned to group D, and group B2 is associated with extra-intestinal pathotype. One hundred E. coli strains recove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical and diagnostic laboratory immunology

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2000